Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964426

RESUMEN

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Aniridia , Anhidrasas Carbónicas , Ataxia Cerebelosa , Discapacidad Intelectual , Trastornos del Movimiento , Degeneraciones Espinocerebelosas , Humanos , Ataxia Cerebelosa/genética , Mutación Missense/genética , Trastornos del Movimiento/complicaciones , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
2.
JAMA Neurol ; 81(1): 59-68, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048087

RESUMEN

IMPORTANCE: Nonmotor symptoms of Parkinson disease (PD) often predate the movement disorder by decades. Currently, there is no blood biomarker to define this prodromal phase. OBJECTIVE: To investigate whether α-synuclein in neuronally derived serum-extracellular vesicles identifies individuals at risk of developing PD and related dementia. DESIGN, SETTING, and PARTICIPANTS: This retrospective, cross-sectional multicenter study of serum samples included the Oxford Discovery, Marburg, Cologne, and Parkinson's Progression Markers Initiative cohorts. Participants were recruited from July 2013 through August 2023 and samples were analyzed from April 2022 through September 2023. The derivation group (n = 170) included participants with isolated rapid eye movement sleep behavior disorder (iRBD) and controls. Two validation groups were used: the first (n = 122) included participants with iRBD and controls and the second (n = 263) included nonmanifest GBA1N409S gene carriers, participants with iRBD or hyposmia, and available dopamine transporter single-photon emission computed tomography, healthy controls, and patients with sporadic PD. Overall the study included 199 participants with iRBD, 20 hyposmic participants with available dopamine transporter single-photon emission computed tomography, 146 nonmanifest GBA1N409S gene carriers, 21 GBA1N409S gene carrier patients with PD, 50 patients with sporadic PD, and 140 healthy controls. In the derivation group and validation group 1, participants with polysomnographically confirmed iRBD were included. In the validation group 2, at-risk participants with available Movement Disorder Society prodromal markers and serum samples were included. Among 580 potential participants, 4 were excluded due to alternative diagnoses. EXPOSURES: Clinical assessments, imaging, and serum collection. MAIN OUTCOME AND MEASURES: L1CAM-positive extracellular vesicles (L1EV) were immunocaptured from serum. α-Synuclein and syntenin-1 were measured by electrochemiluminescence. Area under the receiver operating characteristic (ROC) curve (AUC) with 95% CIs evaluated biomarker performance. Probable prodromal PD was determined using the updated Movement Disorder Society research criteria. Multiple linear regression models assessed the association between L1EV α-synuclein and prodromal markers. RESULTS: Among 576 participants included, the mean (SD) age was 64.30 (8.27) years, 394 were male (68.4%), and 182 were female (31.6%). A derived threshold of serum L1EV α-synuclein distinguished participants with iRBD from controls (AUC = 0.91; 95% CI, 0.86-0.96) and those with more than 80% probability of having prodromal PD from participants with less than 5% probability (AUC = 0.80; 95% CI, 0.71-0.89). Subgroup analyses revealed that specific combinations of prodromal markers were associated with increased L1EV α-synuclein levels. Across all cohorts, L1EV α-synuclein differentiated participants with more than 80% probability of having prodromal PD from current and historic healthy control populations (AUC = 0.90; 95% CI, 0.87-0.93), irrespective of initial diagnosis. L1EV α-synuclein was increased in at-risk participants with a positive cerebrospinal fluid seed amplification assay and was above the identified threshold in 80% of cases (n = 40) that phenoconverted to PD or related dementia. CONCLUSIONS AND RELEVANCE: L1EV α-synuclein in combination with prodromal markers should be considered in the stratification of those at high risk of developing PD and related Lewy body diseases.


Asunto(s)
Vesículas Extracelulares , Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Femenino , Humanos , Masculino , Persona de Mediana Edad , alfa-Sinucleína/metabolismo , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Vesículas Extracelulares/metabolismo , Enfermedad por Cuerpos de Lewy/complicaciones , Enfermedad de Parkinson/complicaciones , Trastorno de la Conducta del Sueño REM/diagnóstico , Estudios Retrospectivos
4.
Brain ; 146(12): 5060-5069, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37450567

RESUMEN

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease, usually caused by biallelic AAGGG repeat expansions in RFC1. In this study, we leveraged whole genome sequencing data from nearly 10 000 individuals recruited within the Genomics England sequencing project to investigate the normal and pathogenic variation of the RFC1 repeat. We identified three novel repeat motifs, AGGGC (n = 6 from five families), AAGGC (n = 2 from one family) and AGAGG (n = 1), associated with CANVAS in the homozygous or compound heterozygous state with the common pathogenic AAGGG expansion. While AAAAG, AAAGGG and AAGAG expansions appear to be benign, we revealed a pathogenic role for large AAAGG repeat configuration expansions (n = 5). Long-read sequencing was used to characterize the entire repeat sequence, and six patients exhibited a pure AGGGC expansion, while the other patients presented complex motifs with AAGGG or AAAGG interruptions. All pathogenic motifs appeared to have arisen from a common haplotype and were predicted to form highly stable G quadruplexes, which have previously been demonstrated to affect gene transcription in other conditions. The assessment of these novel configurations is warranted in CANVAS patients with negative or inconclusive genetic testing. Particular attention should be paid to carriers of compound AAGGG/AAAGG expansions when the AAAGG motif is very large (>500 repeats) or the AAGGG motif is interrupted. Accurate sizing and full sequencing of the satellite repeat with long-read sequencing is recommended in clinically selected cases to enable accurate molecular diagnosis and counsel patients and their families.


Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Síndrome , Enfermedades Vestibulares , Humanos , Vestibulopatía Bilateral , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/diagnóstico , Enfermedades Neurodegenerativas , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades Vestibulares/diagnóstico , Enfermedades Vestibulares/genética
5.
Sci Adv ; 9(24): eadd8910, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37315142

RESUMEN

While defective α-synuclein homeostasis is central to Parkinson's pathogenesis, fundamental questions about its degradation remain unresolved. We have developed a bimolecular fluorescence complementation assay in living cells to monitor de novo ubiquitination of α-synuclein and identified lysine residues 45, 58, and 60 as critical ubiquitination sites for its degradation. This is mediated by NBR1 binding and entry into endosomes in a process that involves ESCRT I-III for subsequent lysosomal degradation. Autophagy or the autophagic chaperone Hsc70 is dispensable for this pathway. Antibodies against diglycine-modified α-synuclein peptides confirmed that endogenous α-synuclein is similarly ubiquitinated in the brain and targeted to lysosomes in primary and iPSC-derived neurons. Ubiquitinated α-synuclein was detected in Lewy bodies and cellular models of aggregation, suggesting that it may be entrapped with endo/lysosomes in inclusions. Our data elucidate the intracellular trafficking of de novo ubiquitinated α-synuclein and provide tools for investigating the rapidly turned-over fraction of this disease-causing protein.


Asunto(s)
Endosomas , alfa-Sinucleína , Ubiquitinación , Ubiquitina , Lisosomas , Complejos de Clasificación Endosomal Requeridos para el Transporte
6.
Anal Chem ; 95(20): 7906-7913, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37167073

RESUMEN

The analysis of cargo proteins in exosome subpopulations has considerable value in diagnostics but a translatable impact has been limited by lengthy or complex exosome extraction protocols. We describe herein a scalable, fast, and low-cost exosome extraction using an alternating (AC) magnetic field to support the dynamic mixing of antibody-coated magnetic beads (MBs) with serum samples within 3D-printed microfluidic chips. Zwitterionic polymer-coated MBs are, specifically, magnetically agitated and support ultraclean exosome capture efficiencies >70% from <50 µL of neat serum in 30 min. Applied herein to the immunocapture of neuronal exosomes using anti-L1CAM antibodies, prior to the array-based assaying of α-synuclein (α-syn) content by a standard duplex electrochemical sandwich ELISA, sub pg/mL detection was possible with an excellent coefficient of variation and a sample-to-answer time of ∼75 min. The high performance and semiautomation of this approach hold promise in underpinning low-cost Parkinson's disease diagnostics and is of value in exosomal biomarker analyses more generally.


Asunto(s)
Exosomas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/metabolismo , Exosomas/química , Campos Magnéticos , Microfluídica
8.
Neurology ; 99(14): e1511-e1526, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36192182

RESUMEN

BACKGROUND AND OBJECTIVES: ATP1A3 is associated with a broad spectrum of predominantly neurologic disorders, which continues to expand beyond the initially defined phenotypes of alternating hemiplegia of childhood, rapid-onset dystonia parkinsonism, and cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss syndrome. This phenotypic variability makes it challenging to assess the pathogenicity of an ATP1A3 variant found in an undiagnosed patient. We describe the phenotypic features of individuals carrying a pathogenic/likely pathogenic ATP1A3 variant and perform a literature review of all ATP1A3 variants published thus far in association with human neurologic disease. Our aim is to demonstrate the heterogeneous clinical spectrum of the gene and look for phenotypic overlap between patients that will streamline the diagnostic process. METHODS: Undiagnosed individuals with ATP1A3 variants were identified within the cohort of the Deciphering Developmental Disorders study with additional cases contributed by collaborators internationally. Detailed clinical data were collected with consent through a questionnaire completed by the referring clinicians. PubMed was searched for publications containing the term "ATP1A3" from 2004 to 2021. RESULTS: Twenty-four individuals with a previously undiagnosed neurologic phenotype were found to carry 21 ATP1A3 variants. Eight variants have been previously published. Patients experienced on average 2-3 different types of paroxysmal events. Permanent neurologic features were common including microcephaly (7; 29%), ataxia (13; 54%), dystonia (10; 42%), and hypotonia (7; 29%). All patients had cognitive impairment. Neuropsychiatric diagnoses were reported in 16 (66.6%) individuals. Phenotypes were extremely varied, and most individuals did not fit clinical criteria for previously published phenotypes. On review of the literature, 1,108 individuals have been reported carrying 168 different ATP1A3 variants. The most common variants are associated with well-defined phenotypes, while more rare variants often result in very rare symptom correlations, such as are seen in our study. Combined Annotation-Dependent Depletion (CADD) scores of pathogenic and likely pathogenic variants were significantly higher and variants clustered within 6 regions of constraint. DISCUSSION: Our study shows that looking for a combination of paroxysmal events, hyperkinesia, neuropsychiatric symptoms, and cognitive impairment and evaluating the CADD score and variant location can help identify an ATP1A3-related condition, rather than applying diagnostic criteria alone.


Asunto(s)
Ataxia Cerebelosa , Trastornos Distónicos , Ataxia Cerebelosa/genética , Trastornos Distónicos/genética , Hemiplejía/genética , Humanos , Mutación/genética , Fenotipo , ATPasa Intercambiadora de Sodio-Potasio/genética
9.
Genet Med ; 24(10): 2079-2090, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35986737

RESUMEN

PURPOSE: Biallelic variants in UCHL1 have been associated with a progressive early-onset neurodegenerative disorder, autosomal recessive spastic paraplegia type 79. In this study, we investigated heterozygous UCHL1 variants on the basis of results from cohort-based burden analyses. METHODS: Gene-burden analyses were performed on exome and genome data of independent cohorts of patients with hereditary ataxia and spastic paraplegia from Germany and the United Kingdom in a total of 3169 patients and 33,141 controls. Clinical data of affected individuals and additional independent families were collected and evaluated. Patients' fibroblasts were used to perform mass spectrometry-based proteomics. RESULTS: UCHL1 was prioritized in both independent cohorts as a candidate gene for an autosomal dominant disorder. We identified a total of 34 cases from 18 unrelated families, carrying 13 heterozygous loss-of-function variants (15 families) and an inframe insertion (3 families). Affected individuals mainly presented with spasticity (24/31), ataxia (28/31), neuropathy (11/21), and optic atrophy (9/17). The mass spectrometry-based proteomics showed approximately 50% reduction of UCHL1 expression in patients' fibroblasts. CONCLUSION: Our bioinformatic analysis, in-depth clinical and genetic workup, and functional studies established haploinsufficiency of UCHL1 as a novel disease mechanism in spastic ataxia.


Asunto(s)
Ataxia Cerebelosa , Atrofia Óptica , Paraplejía Espástica Hereditaria , Ataxias Espinocerebelosas , Ubiquitina Tiolesterasa , Ataxia/genética , Ataxia Cerebelosa/genética , Humanos , Mutación con Pérdida de Función , Espasticidad Muscular/genética , Mutación , Atrofia Óptica/genética , Linaje , Paraplejía Espástica Hereditaria/genética , Ataxias Espinocerebelosas/genética , Ubiquitina Tiolesterasa/genética
10.
Cell Mol Life Sci ; 79(4): 210, 2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35347432

RESUMEN

α-Synuclein aggregation is a critical molecular process that underpins the pathogenesis of Parkinson's disease. Aggregates may originate at synaptic terminals as a consequence of aberrant interactions between α-synuclein and lipids or evasion of proteostatic defences. The nature of these interactions is likely to influence the emergence of conformers or strains that in turn could explain the clinical heterogeneity of Parkinson's disease and related α-synucleinopathies. For neurodegeneration to occur, α-synuclein assemblies need to exhibit seeding competency, i.e. ability to template further aggregation, and toxicity which is at least partly mediated by interference with synaptic vesicle or organelle homeostasis. Given the dynamic and reversible conformational plasticity of α-synuclein, it is possible that seeding competency and cellular toxicity are mediated by assemblies of different structure or size along this continuum. It is currently unknown which α-synuclein assemblies are the most relevant to the human condition but recent advances in the cryo-electron microscopic characterisation of brain-derived fibrils and their assessment in stem cell derived and animal models are likely to facilitate the development of precision therapies or biomarkers. This review summarises the main principles of α-synuclein aggregate initiation and propagation in model systems, and their relevance to clinical translation.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Encéfalo/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo
11.
Nanomicro Lett ; 14(1): 3, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34855021

RESUMEN

Extracellular vesicles (EVs) are cell-derived membranous particles that play a crucial role in molecular trafficking, intercellular transport and the egress of unwanted proteins. They have been implicated in many diseases including cancer and neurodegeneration. EVs are detected in all bodily fluids, and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated. As such, they provide opportunities in biomarker discovery for diagnosis, prognosis or the stratification of diseases as well as an objective monitoring of therapies. The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application, and multiplexing platforms have evolved with the potential to achieve this. Herein, we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis, with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power, throughput and consistency.

12.
Nat Commun ; 12(1): 3817, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155194

RESUMEN

α-Synuclein is critical in the pathogenesis of Parkinson's disease and related disorders, yet it remains unclear how its aggregation causes degeneration of human dopaminergic neurons. In this study, we induced α-synuclein aggregation in human iPSC-derived dopaminergic neurons using fibrils generated de novo or amplified in the presence of brain homogenates from Parkinson's disease or multiple system atrophy. Increased α-synuclein monomer levels promote seeded aggregation in a dose and time-dependent manner, which is associated with a further increase in α-synuclein gene expression. Progressive neuronal death is observed with brain-amplified fibrils and reversed by reduction of intraneuronal α-synuclein abundance. We identified 56 proteins differentially interacting with aggregates triggered by brain-amplified fibrils, including evasion of Parkinson's disease-associated deglycase DJ-1. Knockout of DJ-1 in iPSC-derived dopaminergic neurons enhance fibril-induced aggregation and neuronal death. Taken together, our results show that the toxicity of α-synuclein strains depends on aggregate burden, which is determined by monomer levels and conformation which dictates differential interactomes. Our study demonstrates how Parkinson's disease-associated genes influence the phenotypic manifestation of strains in human neurons.


Asunto(s)
Neuronas Dopaminérgicas/patología , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Muerte Celular , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Atrofia de Múltiples Sistemas/metabolismo , Enfermedad de Parkinson/metabolismo , Fenotipo , Agregado de Proteínas , Agregación Patológica de Proteínas , Conformación Proteica , Proteína Desglicasa DJ-1/metabolismo , Mapeo de Interacción de Proteínas , alfa-Sinucleína/química , alfa-Sinucleína/toxicidad
13.
Mov Disord ; 36(11): 2663-2669, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33826157

RESUMEN

BACKGROUND: Parkinson's disease is characterized by intraneuronal α-synuclein aggregation. Currently there is no α-synuclein-based blood test in clinical practice. OBJECTIVES: Our aim was to assess by means of further testing and analysis whether α-synuclein measurements in serum L1CAM-immunocaptured exosomes can differentiate Parkinson's disease from related movement disorders. METHODS: We used poly(carboxybetaine-methacrylate)-coated magnetic beads to isolate L1CAM-positive exosomes and triplexed electrochemiluminescence to measure exosomal α-synuclein, clusterin, and syntenin-1 from 267 serum samples. Combined analysis of our current and previously published data from the Oxford, Kiel, Brescia, and PROSPECT cohorts consisting of individuals (total n = 735) with Parkinson's disease (n = 290), multiple system atrophy (MSA, n = 50), progressive supranuclear palsy (n = 116), corticobasal syndrome (n = 88), and healthy controls (n = 191) was done using 2-stage (training vs validation) receiver operating characteristic analysis. RESULTS: We established that α-synuclein level in L1CAM-immunocaptured exosomes above 14 pg/mL is a robust biomarker across cohorts that distinguishes Parkinson's disease from MSA (AUC, 0.90 vs 0.98) or 4-repeat tauopathies (AUC, 0.93 vs 0.94). We confirmed that exosomal clusterin is elevated in subjects with 4-repeat tauopathy, and when combined with α-synuclein, it improved the performance of the assay in differentiating Parkinson's disease from 4-repeat tauopathies to AUC, 0.98 versus 0.99. Correction for the generic exosomal protein syntenin-1 did not consistently improve the performance of the assay. CONCLUSIONS: α-Synuclein and clusterin in L1CAM-immunocaptured serum exosomes is a validated blood test for the molecular stratification of neuronal α-synucleinopathy (ie, Lewy body pathology) versus phenotypically related neurodegenerative movement disorders. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Exosomas , Molécula L1 de Adhesión de Célula Nerviosa , Trastornos Parkinsonianos , Biomarcadores , Exosomas/metabolismo , Humanos , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Trastornos Parkinsonianos/metabolismo , alfa-Sinucleína/metabolismo
14.
Anal Chem ; 92(20): 13647-13651, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32945162

RESUMEN

The egress of α-synuclein in neuronally derived exosomes predates the clinical presentation of Parkinson's disease (PD), offering a means of developing a predictive or prognostic test. Here, we report the reagentless impedimetric assay of two internal exosome markers (α-synuclein and syntenin-1) from neuronal exosomes. Exosomes were efficiently extracted from patient sera using anti-L1CAM conjugated zwitterionic polymer-modified magnetic beads prior to lysis and analyzed by electrochemical impedance spectroscopy. The quantification of α-synuclein level across 40 clinical samples resolved statistically significant differences between PD patients and healthy controls (HC).


Asunto(s)
Biomarcadores/análisis , Espectroscopía Dieléctrica/métodos , Exosomas/metabolismo , Enfermedad de Parkinson/diagnóstico , alfa-Sinucleína/análisis , Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/inmunología , Biomarcadores/sangre , Humanos , Límite de Detección , Magnetismo , Molécula L1 de Adhesión de Célula Nerviosa/química , Molécula L1 de Adhesión de Célula Nerviosa/inmunología , Enfermedad de Parkinson/metabolismo , Polímeros/química , Sinteninas/análisis , alfa-Sinucleína/sangre
15.
J Neurol Neurosurg Psychiatry ; 91(7): 720-729, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32273329

RESUMEN

OBJECTIVE: Parkinson's disease is characterised neuropathologically by α-synuclein aggregation. Currently, there is no blood test to predict the underlying pathology or distinguish Parkinson's from atypical parkinsonian syndromes. We assessed the clinical utility of serum neuronal exosomes as biomarkers across the spectrum of Parkinson's disease, multiple system atrophy and other proteinopathies. METHODS: We performed a cross-sectional study of 664 serum samples from the Oxford, Kiel and Brescia cohorts consisting of individuals with rapid eye movement sleep behavioural disorder, Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, frontotemporal dementia, progressive supranuclear palsy, corticobasal syndrome and controls. Longitudinal samples were analysed from Parkinson's and control individuals. We developed poly(carboxybetaine-methacrylate) coated beads to isolate L1 cell adhesion molecule (L1CAM)-positive extracellular vesicles with characteristics of exosomes and used mass spectrometry or multiplexed electrochemiluminescence to measure exosomal proteins. RESULTS: Mean neuron-derived exosomal α-synuclein was increased by twofold in prodromal and clinical Parkinson's disease when compared with multiple system atrophy, controls or other neurodegenerative diseases. With 314 subjects in the training group and 105 in the validation group, exosomal α-synuclein exhibited a consistent performance (AUC=0.86) in separating clinical Parkinson's disease from controls across populations. Exosomal clusterin was elevated in subjects with non-α-synuclein proteinopathies. Combined neuron-derived exosomal α-synuclein and clusterin measurement predicted Parkinson's disease from other proteinopathies with AUC=0.98 and from multiple system atrophy with AUC=0.94. Longitudinal sample analysis showed that exosomal α-synuclein remains stably elevated with Parkinson's disease progression. CONCLUSIONS: Increased α-synuclein egress in serum neuronal exosomes precedes the diagnosis of Parkinson's disease, persists with disease progression and in combination with clusterin predicts and differentiates Parkinson's disease from atypical parkinsonism.


Asunto(s)
Exosomas/metabolismo , Atrofia de Múltiples Sistemas/diagnóstico , Neuronas/metabolismo , Enfermedad de Parkinson/diagnóstico , Trastornos Parkinsonianos/diagnóstico , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Estudios Transversales , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/sangre , Enfermedad de Parkinson/sangre , Trastornos Parkinsonianos/sangre
16.
J Neurochem ; 150(5): 577-590, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31069800

RESUMEN

The levels and conformers of alpha-synuclein are critical in the pathogenesis of Parkinson's Disease and related synucleinopathies. Homeostatic mechanisms in protein degradation and secretion have been identified as regulators of alpha-synuclein at different stages of its intracellular trafficking and transcellular propagation. Here we review pathways involved in the removal of various forms of alpha-synuclein from both the intracellular and extracellular environment. Proteasomes and lysosomes are likely to play complementary roles in the removal of intracellular alpha-synuclein species, in a manner that depends on alpha-synuclein post-translational modifications. Extracellular alpha-synuclein is cleared by extracellular proteolytic enzymes, or taken up by neighboring cells, especially microglia and astrocytes, and degraded within lysosomes. Exosomes, on the other hand, represent a vehicle for egress of excess burden of the intracellular protein, potentially contributing to the transfer of alpha-synuclein between cells. Dysfunction in any one of these clearance mechanisms, or a combination thereof, may be involved in the initiation or progression of Parkinson's disease, whereas targeting these pathways may offer an opportunity for therapeutic intervention. This article is part of the Special Issue "Synuclein".


Asunto(s)
alfa-Sinucleína/metabolismo , Astrocitos/metabolismo , Progresión de la Enfermedad , Exosomas/metabolismo , Líquido Extracelular/metabolismo , Terapia Genética , Humanos , Inmunoterapia , Líquido Intracelular/metabolismo , Cuerpos de Lewy/metabolismo , Lisosomas/metabolismo , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregación Patológica de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Ubiquitinación , alfa-Sinucleína/química
17.
Methods Mol Biol ; 1948: 199-208, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30771179

RESUMEN

Parkinson's disease is the second most common neurodegenerative disease without cure. It is characterized by α-synuclein accumulation and aggregation in dopaminergic and other types of neurons. Because α-synuclein accumulation leads to a toxic gain of function, its ectopic expression in Drosophila has been a useful in vivo model for testing modifiers of its toxicity. This chapter describes four assays: the rapid iterative negative geotaxis, rough eye phenotype, quantification of dopaminergic neuronal loss, and measurements of circadian effects.


Asunto(s)
Bioensayo , Drosophila/metabolismo , alfa-Sinucleína/metabolismo , Animales , Animales Modificados Genéticamente , Conducta Animal , Bioensayo/métodos , Biomarcadores , Ritmo Circadiano , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Locomoción , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/toxicidad
18.
Ann Neurol ; 83(5): 915-925, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29604226

RESUMEN

OBJECTIVE: Defective mitochondrial function attributed to optic atrophy 1 (OPA1) mutations causes primarily optic atrophy and, less commonly, neurodegenerative syndromes. The pathomechanism by which OPA1 mutations trigger diffuse loss of neurons in some, but not all, patients is unknown. Here, we used a tractable induced pluripotent stem cell (iPSC)-based model to capture the biology of OPA1 haploinsufficiency in cases presenting with classic eye disease versus syndromic parkinsonism. METHODS: iPSCs were generated from 2 patients with OPA1 haploinsufficiency and 2 controls and differentiated into dopaminergic neurons. Metabolic profile was determined by extracellular flux analysis, respiratory complex levels using immunoblotting, and complex I activity by a colorimetric assay. Mitochondria were examined by transmission electron microscopy. Mitochondrial DNA copy number and deletions were assayed using long-range PCR. Mitochondrial membrane potential was measured by tetramethylrhodamine methyl ester uptake, and mitochondrial fragmentation was assessed by confocal microscopy. Exome sequencing was used to screen for pathogenic variants. RESULTS: OPA1 haploinsufficient iPSCs differentiated into dopaminergic neurons and exhibited marked reduction in OPA1 protein levels. Loss of OPA1 caused a late defect in oxidative phosphorylation, reduced complex I levels, and activity without a significant change in the ultrastructure of mitochondria. Loss of neurons in culture recapitulated dopaminergic degeneration in syndromic disease and correlated with mitochondrial fragmentation. INTERPRETATION: OPA1 levels maintain oxidative phosphorylation in iPSC-derived neurons, at least in part, by regulating the stability of complex I. Severity of OPA1 disease associates primarily with the extent of OPA1-mediated fusion, suggesting that activation of this mechanism or identification of its genetic modifiers may have therapeutic or prognostic value. Ann Neurol 2018;83:915-925.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/metabolismo , Trastornos Parkinsonianos/metabolismo , ADN Mitocondrial/genética , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Atrofia Óptica/genética , Fosforilación Oxidativa , Trastornos Parkinsonianos/genética
19.
J Neurol Neurosurg Psychiatry ; 89(9): 962-969, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29459380

RESUMEN

In our ageing population, neurodegenerative disorders carry an enormous personal, societal and economic burden. Although neurodegenerative diseases are often thought of as clinicopathological entities, increasing evidence suggests a considerable overlap in the molecular underpinnings of their pathogenesis. Such overlapping biological processes include the handling of misfolded proteins, defective organelle trafficking, RNA processing, synaptic health and neuroinflammation. Collectively but in different proportions, these biological processes in neurons or non-neuronal cells lead to regionally distinct patterns of neuronal vulnerability and progression of pathology that could explain the disease symptomology. With the advent of patient-derived cellular models and novel genetic manipulation tools, we are now able to interrogate this commonality despite the cellular complexity of the brain in order to develop novel therapeutic strategies to prevent or arrest neurodegeneration. Here, we describe broadly these concepts and their relevance across neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Humanos , Enfermedades Neurodegenerativas/metabolismo
20.
J Parkinsons Dis ; 7(4): 569-576, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28922170

RESUMEN

Extracellular vesicles including exosomes are released by a variety of cell types including neurons and exhibit molecular profiles that reflect normal and disease states. As their content represents a snapshot of the intracellular milieu, they could be exploited as biomarkers of the otherwise inaccessible brain microenvironment. In addition they may contribute to the progression of neurodegenerative disorders by facilitating the spread of misfolded proteins at distant sites or activating immune cells. This review summarizes recent advances in the study of exosomes in Parkinson's disease pathophysiology and their potential as disease biomarkers.


Asunto(s)
Encéfalo/patología , Exosomas/metabolismo , Exosomas/patología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Humanos , Evaluación de Resultado en la Atención de Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA